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We have investigated a lattice gas model consisting of repulsive particles 
following deterministic dynamics. Two versions of the model are studied. In one 
case we consider a finite open system in which particles can leave and enter the 
lattice over the edge. In the other case we use periodic boundary conditions. In 
both cases the density fluctuations exhibit a l / f  power spectrum. The individual 
particles behave asymptotically like ordinary random walkers. The collective 
behavior of these particles shows that due to the deterministic dynamics the par- 
ticles behave as if they are correlated in time. We have numerically investigated 
the power spectrum of the density fluctuations, the lifetime distribution, and the 
spatial correlation function. We discuss the appropriate Langevin-like diffusion 
equation which can reproduce our numerical findings. Our conclusion is that 
the deterministic lattice gases are described by a diffusion equation without any 
bulk noise. The open lattice gas exhibits a crossover behavior as the probability 
for introducing particles at the edge of the system becomes small. The power 
spectrum changes from a 1If to a 1If 2 spectrum. The diffusive description, 
proven to be valid for a moderate boundary drive, fails altogether when the 
drive goes to zero. 

KEY WORDS: Diffusion equation; power spectra; lattice gas; exact solu- 
tions; correlation functions; lifetime distribution; single particle properties; 
collective properties; dynamical crossover. 

1. I N T R O D U C T I O N  

O n e  o f  t h e  o p e n  q u e s t i o n s  in  s t a t i s t i c a l  p h y s i c s  is h o w  to  d e r i v e  effect ive 

d i f fus ive  L a n g e v i n - l i k e  e q u a t i o n s  o n  t h e  b a s i s  of  t he  m i c r o s c o p i c  i n t e r -  

a c t i o n s  in  a m a n y - b o d y  sys t em.  T h i s  t a k s  h a s  o n l y  b e e n  a c h i e v e d  in  ve ry  

spec ia l  cases ,  s u c h  as  in  s i m p l e  o n e - d i m e n s i o n a l  m o d e l s .  (1) 
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The coarse-grained hydrodynamic equations, in which all fluctuations 
are integrated out, can be established by considering the symmetries and 
conservations of the system, and assuming the existence of an appropriate 
regularity of the problem so that gradient expansions are possible. (2) This 
leads to partial differential equations such as the ordinary diffusion 
equation, say, of the form 

0,n = ~V2n q- Fin, Vn] (1) 

where Fin, Vn] denotes some general function which takes care of all the 
higher-order terms in the expansion in n and Vn. The fundamental problem 
arises when one wants to account for fluctuations. This is most often done 
by adding some kind of noise, consistent with the symmetries and conser- 
vations of the system, to the right-hand side of the diffusion equation 

a,n = 7V2n + Fin, Vn] + p (2) 

Lacking anything better, one normally assumes the fluctuating source p to 
be a delta-correlated (in time as well as in space) Gaussian process. 13'4) 
Though power law distributed noise has recently been considered, (5) the 
important point is that the assumed form of the noise term determines the 
fluctuations of the system described by (2). This makes it particularly 
unsatisfactory that we do not know how to determine the form of the 
fluctuating source term from the microscopics of the considered many-body 
system. 

Our aim in the present paper is to put this problem into perspective 
by presenting results for a very simple lattice gas model. (6) Consider a 
lattice gas consisting of hard-core nearest-neighbor repulsive particles. 
Particles are allowed to enter or leave the system at the edge. The behavior 
of the individual particles can, for instance, be characterized by the dis- 
tribution of the time D(t) they spend on the lattice from the time they enter 
from an edge until they leave. In addition, one can determine the dispersion 
of the particle position with time: RZ(t)= ( [ r ( t ) - r ( t  =0) ]2) .  The collec- 
tive behavior of the particle system is partly characterized by the fluctua- 
tions in the total number of particles on the system N(t). The striking point 
is that the long-time behavior of this model [which is captured in N(t)] 
depends on the kind of microdynamics the particles follow in each time 
step. StudieS of two-dimensional lattice gases show that the low-frequency 
behavior of the power spectrum S(f)  of N(t) depends on whether the 
updating algorithm is stochastic or deterministic. In both cases the power 
spectrum displays power-law behavior 

S(f)  oc l i f  e (3) 
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For moderate boundary drive, the deterministic lattice gas model has fl-- 1 
(see ref. 6 and below). A similar lattice gas with hard-core repulsion drive 
by stochastic Monte Carlo dynamics was studied by Andersen et al., (7) who 
found fi = 3/2 in one, two, and three dimensions. 

The behavior of the single-particle characteristics D(t) and R2(t), 
however, is not sensitive to the difference between stochastic and deter- 
ministic updating. In both cases one finds scaling behavior 

D(t) oc 1/t ~, R2(t) oc t  (4) 

with e = 3/2, which suggests that the individual particles asymptotically 
experience ordinary random walks. (7)'4 Moreover, as the drive at the 
boundary becomes small, the deterministic model exhibits a crossover to 
/~ = 2. The single-particle quantities D(t) and R2(t) have the same scaling 
behavior independent of the strength of the boundary drive. 

The exponents e = fl = 3/2 are characteristic of noninteracting random 
walkers independent of dimension (7' 2o) and can be reproduced by a diffu- 
sion equation like (2) with a conserving bulk noise term. (14"2~ The 
exponents e = 3/2 and fl = 1 can be reproduced, independent of dimension, 
by a diffusion equation like (1) driven by a white noise boundary condition 
without any bulk noise, (see refs. 12 and 14 and below). This scaling 
behavior is independent of possible nonlinear terms in the diffusion equa- 
tion. (14) We do not know of any consistent diffusive description which 
allows us to describe the region of low boundary drive with ~ = 3/2 and 

fl--2. 
It is worthwhile to point out that any deviation from the scaling 

relation e + fi = 3 indicates that important correlations exist between the 
individual particles. ~ With this in mind we note that the particles in the 
stochastically driven model behave as if there were no correlations between 
the particles. Thus, the stochastic element present in each update is able to 
destroy the interpartMe correlations produced by the interaction. This is 
not the case when the model is driven deterministically. Although the 
particles perform erratic individual motion, as seen from the random 
walker form of D(t) and R2(t), they continue to be correlated even after 
many collisions. This difference is the reason why the Langevin description 
in terms of (2) has to assume two different kinds of fluctuating source 
terms for the two types of updating algorithms. We found this result dif- 
ficult to anticipate. 

Below we concentrate on details of the deterministic lattice gas. In 

4 The exponent ~ was mistakenly determined to be equal to 2 in ref. 6. The reason for this 
mistake and the correct determination are described in Section 4.3 of the present paper. 
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Section 2 we introduce the model. Section 3 contains a detailed analytic 
solution of the linear diffusion equation, solved in a finite region and driven 
with a white noise boundary condition. We calculate the density fluctua- 
tions, the spatial correlation function, the power spectrum, and the lifetime 
distribution. We present our simulation results in Section 4: the measured 
diffusion constant for tracer diffusion as well as for collective diffusion, 
the power spectrum, lifetime distribution, correlation functions, and the 
structure factor. In order to investigate the crossover in the behavior as the 
drive at the edge becomes small, we devote Section 4.6 to the study of 
crossover behavior as a function of boundary drive. In Section 5 we 
describe a completely deterministic periodic model which also exhibits 1If 
fluctuations in the particle density. 

2. THE M O D E L  

The lattice gas model is constructed to simulate particles which follow 
Stokesian dynamics. That  is, the equation of motion has the form ttv = F, 
where t/is the friction coefficient, v the velocity, and F the total force acting 
on the particle. 

Consider now a two-dimensional square lattice of N x N sites. Each 
site can be empty or occupied. Particles on nearest neighbor sites repel each 
other with a central force of unit strength. The dynamics is deterministic 
and defined in the following way. For  each particle we sum up all the forces 
acting upon the particle in the normal vectorial fashion. If the resulting 
force is nonzero, we move the particle one lattice site in the direction 
according to the resulting force (diagonal moves are accepted). In case of 
competition where two particles which are acted upon by a force of equal 
strength want to move into the same site, neither particle moves. This will 
be termed the blocking mechanism. Finally, if two particles want to move 
to the same site but are acted upon by forces of unequal strength, the 
particle with the largest force wins. The whole lattice is simultaneously 
updated. The updating rules are illustrated in Fig. 1 in the case of an 8 x 8 
lattice. 

The boundary drive acts as a particle reservoir which tends to set up 
an external pressure by occupying the outer boundary by fixed particles 
(the cross-hatched particles in Fig. 1), which tends to push particles on 
neighbor sites into the lattice. 

In each iteration, the particles at the boundary sites (i.e., the particles 
which are nearest neighbor to the cross-hatched particles) are annihilated, 
and new particles are introduced at all the boundary sites with a probabil- 
ity p per site. 

Figure 2 shows a series of snapshots of our lattice gas model, which 
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Fig. 1. Updat ing rules for the deterministic lattice gas model. The arrows on the particles 
indicate where the particles move to in the next iteration. The particles without any arrow do 
not  move. The case where two or more particles want to enter the same site needs special con- 
sideration. First, for competition between two particles which are acted upon by a force of 
equal strength, no particle moves. This is shown for the four particles occupying the third row 
from the bottom. Second, if two particles want to move to the same site but are acted upon 
by forces of unequal strength, the particle with the largest force wins, as shown for the particle 
with the diagonal arrow. 
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Fig. 2. Series of snapshots  for a fixed lattice site of 32 x 32 for different values of the 
boundary drive p. As p is reduced, the external pressure ceases, thereby altowing the continued 
growth of ordered domains. 
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illustrates the particle configuration for a 32 x 32 lattice for different values 
of p. All snapshots are taken after the lattice gas has equilibrated. For 
p = 10- i, we see the particles occupying the lattice more or less uniformly, 
with no observable pattern. Several of the particles are seen to be nearest 
neighbors, and are thus likely to move in the next iteration. Moving on to 
p - -10  -2, one immediately sees a difference in the configuration. Now a 
much smaller fraction of the particles are nearest neighbors, giving rise to 
the formation of domains of ordered particles sitting in a cubic lattice. It 
can readily be checked that the cubic pattern has a degeneracy of four. 
Thus, the dynamics for small p can be thought of as an interplay among 
domains of different types, the competition between the external drive 
which tends to frustrate the formation of the ordered structure and the 
energy-driven development of this pattern. For p =  10 3 and finally 
p = 10 4, this development continues, creating larger and larger ordered 
domains. In the limit of vanishing p it is expected that the lattice ends up 
in one monodomain extending through the lattice. 

One might wonder why the nearest neighbor interaction used does not 
lead to a checkerboard pattern of density 1/2 at low p. The checkerboard 
pattern will, like the observed cubic pattern, minimize the interaction 
energy. However, the checkerboard pattern is unstable to perturbations. 
A particle displaced one site in the checkerboard pattern will produce a 
perturbation which propagates through the whole pattern, whereas a 
similar perturbation of the cubic pattern only propagates one-dimen- 
sionally. 

3. D I F F U S I V E  D E S C R I P T I O N  

The lattice gas described above consists of repulsive particles moving 
around on the lattice. We will now attempt to describe the lattice gas from 
a macroscopic point of view by introducing a continuous model. The 
application of such a model to the discrete lattice gas model is only valid 
at a coarse-grained level, where the microscopic motion of the particles has 
been averaged out. The simplest possible description one can think of is the 
linear diffusion equation. In order to determine to what degree the diffusion 
equations offers an adequate description, we introduce a coarse-grained 
density n(r, t), which denotes the number density of particles, in a volume 
element around r at time t. We will concentrate on three properties, the 
power spectrum S(f) of the total number of particles on the lattice, the 
spatial correlation function C(r, r'), and the lifetime distribution D(t). In 
order to calculate these quantities only the fluctuations in n(r, t) around its 
average value (n(r, t ) )  enter into the calculation. Thus the absolute value 
of (n(r, t ) )  is irrelevant and for convenience we will take this as zero. 
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The appropriate boundary condition on n(r, t) should be taken such 
as to mimic the boundary drive on the lattice gas model. In the lattice gas 
model, the particle density at the boundary varies in a stochastic manner, 
which is characterized by the lack of long-time correlations. Thus, it is 
natural to apply a white noise boundary condition on n(r, t). 

The diffusion equation should be solved in a bounded region f2, where 
f2 = [0, L]  x [0, L]. The side length L = Nao is measured in units of the 
lattice spacing a 0. Hence 

0n(r, 
t ) -7Van(r  , t ) +  p(r, t) (r ~f2, t>O)  (5) 

n(r, t) = r/(r, t) (r E S, t > 0) (6) 

where S denotes the surface of f2. The Dirichlet condition consists of fixing 
n(r, t) to take the value r/(r, t), which is a white noise boundary term. 5 

The solution to (5) and (6) can be expressed in terms of the 
appropriate Green's function G(r, t lr0, to). The Green's function is the 
propagator to a pulse at ro e f2 at time to. The causality condition forces 
G(r, t lro, t o )=0  when t <  to. 

The Green's function is a solution to the problem involving an 
impulsive point source 

~G(r, tlro, to) 7V2G(r, tlro, to)=c~(r-ro)6(t-to) (r~s t > 0 )  (7) 
~t 

where the Green's function should be chosen to satisfy the homogeneous 
boundary condition G(r, t lro, to)= 0 when r 0 ~ So or r ~ S. 

The Green's function is now used to construct the solution for the 
particle density n(r, t) (see ref. 16, Chapter 7). Hence, in general, 

f fo n(r, t) = G(r, t l ro, to) p(ro, to) df2o dto 
0 

+ fa G(r, t l ro, 0) n(ro, 0) dr2 o 

+ y [G(r, t lro, to) Von(ro, to) 
o 

- n(ro, to) VoG(r, t l ro, to)] dSo dto (8) 

5 Diffusion driven by a boundary noise was considered by Liu (~~ in connection with l/f noise 
in metals. See also the review by Duta and HornJ m 
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The first term in (8) represents the response of a volume noise term, 
which we will disregard because we are only concerned with .the deter- 
ministic lattice gas model. The second term represents the effect of having 
an initial condition on n(r, t). This term can, however, be ignored, because 
we are only interested in ensemble properties, which we assume to be inde- 
pendent of the initial condition. Finally, using the homogeneous condition 
of the Green's function, we obtain that the first part in the third term 
vanishes. Hence, 

n(r, t )=  - 7  n(ro, t0) VoG(r, tlro, to)dSodto (9) 
0 

The solution to (7) may be obtained by the method of eigenfunction 
expansion, whereby we expand the Green's function on the eigenfunctions 
to the Laplacian V 2 on the domain s subject to zero homogeneous Dirichlet 
condition, 

V2u(r) = ;~u(r) (10) 

The eigenfunctions and eigenvalues are obtained by the method of separa- 
tion of variables. (18) Hence, 

2 mTtx . nrty 2m,=- -  + (11) 
Urn" = Z sin ~ -  sin L '  

where the indices m, n take the values (m, n = I,..., ~) .  The Green's func- 
tion can now be obtained by expanding G(r, t lro, to) on the eigenfunctions 
(11), and the Green's function can now be written 

G(r, fir0, to)= ~, ~, Um,(r) Um,(ro)exp[~2m,(t-to) ] O( t - to )  (12) 
m = l  n = l  

where ~9(t) is the Heaviside step function, included to force G = 0 when 
t < to. The Green's function (12) is now to be substituted into (9) to get the 
formula for n(r, t). The noise term q(r, t) is separated into four parts, 
q(i)(r, t), where i=  1 ..... 4 corresponds to the four boundaries of s 

After evaluating the gradient of the Green's function and simplifying 
the expression, we obtain 

n(r , t )=---2~ ~ ~ Um,(r) fodtoexp[72m,( t - to)]O(t- to)  
L r n ~ l  n ~ l  

• dxo sin \ L J \  L ] [-q(3)(r~ 10) cos(mr)-  q(1)(ro, to)] 

\ L / \  L ] [-r/(2)(r~ to) cos(m~)-- r/(4)(ro, to) ] 

(13) 
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Now we are in a position to calculate the power spectrum and other 
quantities. It is important to recognize that (13) is generally valid for 
any boundary drive t/if, t), though here we restrict this to include only 
white noise. This assumption can easily be stated in terms of the correlation 
function between the individual noise terms. We will assume that the noise 
terms are uncorrelated in space and time, in correspondence with the 
boundary conditions for the deterministic lattice gas model, with zero 
average: 

(tl(i)(r, t) ~(J)(r', t ' )  ) = A6o.3(r-r '  ) 3( t -  t') 
(14) 

(r/(~)(r, t ) ) = 0  

where ( . . . )  denotes an ensemble average. The ensemble average is 
performed by considering a huge number of independent realizations of 
the white noise term q(~ t). The ensemble average is as usually converted 
to a time and space average. Thus, for any function f (r ,  t), the average 
( f ( r ,  t ) )  is calculated from 

( f ( r ,  t ) )  = ~  dr2 r~o~Tlim dt f (r ,  t) (15) 

The functional form of t/(i)(r, t) is not given a priori, but is chosen to 
match our needs. The actual form of t/(i)(r, t) we choose is 

N 
tl(i)(r, t ) :  2 q(i)( r' l) 

, : 1  (16) 

~(ni)(r, t) : 6(F - - r  n(i))At ~ 6 ( t -  t~i)~)-p6(r (i) - - r  n ) 
k=0 

where At is our time unit. The expression (16) is very appealing physically, 
and we will explain it in the following. Consider a specific lattice site along 
the border i, -n r(i), where the index n picks one of the N possible choices. The 
noise term acting on this site is termed t/~)(r, t). The time sequence ~t (~ ( k, nJ  
(k = 0,..., ~ )  is selected in such a way that on average p elements from the 
series fall in each time interval of duration At. If we neglect the term 
p 3 ( r -  r r n ) in q(~~ t), this corresponds to a particle entering the lattice site 
r(/) exactly when t = ,(i) [The term containing p could be neglected in the ~k,n �9 
whole analysis, but is included here such that the average value (r/(~i)(r, t ) )  
is zero.] This choice is a matter of convenience, and is valid because we 
only consider the fluctuations in n(r, t). The form of the noise term t/(i)(r, t) 
is just a sum over the individual noise terms ~/(i)(r, t) acting on the lattice 
sites. 
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The amplitude factor A in (14) controls the number of particles which 
enter the lattice over the rim and is calculated by substituting (16) into 
(14), using the definition of the average given by (15). By applying 
Campell's theorem, (19) we obtain 

Np At 
A -  L2 (17) 

3.1. P o w e r  S p e c t r u m  

The power spectrum S(f) of the total number of particles is evaluated 
from Fourier transformation of the integrated particle density given by 

N(co) = dt exp(ie)t) df~ n(r, t) (18) 
oo 

By substituting (13) into (18), we obtain 
oo oo 

N(og)= 167t 7 Z '  Z '  f ~  
1 

m l  = 1 nl  = 1 2 7 m l n l  - ~  io9 _~ dto exp(&Oto) 

•176 \ L JkmlLJ  [?/(1)(ro, to)+r/(3)(ro, to)] 

•176 1-~ } \ L / \n iL/  [q(2)(r~ t~176 to)] (19) 

where the summation symbol 3~' denotes that the sum indices in (19) are 
restricted to odd values. Further, we have changed the upper limit in the 
to integral from t to ~ ,  which is allowed because of the Heaviside function 
in (13). The power spectrum S(co) is obtained from 

S(~o) 6(co - ~o') = (N(c~) N*(co')) (20) 

The delta function in the definition (20) represents the dc component of 
N(t). The ensemble average is handled by (14), whereby we obtain 

5127z3~/2A 
(N(og) N*(a;)} = 

Lao 2' E' E' E' 
m t = l  m 2 = l  n l = l  n 2 = l  ( / ~ m l n l 7  -[- io9)()~m2.27 - -  i o 9 ' )  

It should be recognized in (21) that the summation indices m2 in the first 
part and n 2 in the second part collapse because of the orthogonality 
relation of the eigenfunctions. 
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The occurrence of the prefactor 1/ao in (21) results because the 
integral over t/(~ to) is a line integral, while the boundary noise is a 
particle density. This is treated by averaging t/(~ o, to) over one lattice 
unit ao. 

The next step is to introduce the eigenvalues (11) back into (21). After 
some algebra we get 

S(~~ m ~--' 1 (~-72)( . ~ ' l n l + m  2 2  _1 icnL2/g27 ) 

1 ~, 1 ~, 1 
x n~ + rn21 + irnL2/g27 + n n I = 1 m 1 m~ + n~ --ie)L2/g27 

' )]  22, x m 2 + n~ + icoL2/g27 
m = 

The summation can now be evaluated using the identity (17) 

. = l n 2 - z  4 ~ z t a n \  2 .]' zeCg (23) 

As can be seen from (22), the summation (23) occurs together with a 
summation of the complex conjugate. Putting everything together, we 
obtain 

o o  S(co) 64AL3g ~ ,  1 1 
ao m= i ~ ( m4 -I- (02L4/g4~2) 1/2 

x tan f ;  ( - m 2  + i~176 '/2 ] ~ 2 7 / j  tan [ ; (  - m 2 _ it~ ) (24) 

To continue with the calculation, we introduce the notation 

icoL 2,~ 1/2 
u m = R e ( - - m 2 + ~ )  

(25) 
v m = Im ( - m  2 + ic~ 1/2 

g27 / 

where Re and Im are the real and the imaginary parts, respectively. 
It should be recognized that u m and v m are both positive. By introducing 
(25) into (24), we obtain 

64AL3g ~ ,  1 1 cosh(~vm)-cos(gum) (26) 
S(o)) - ~ ~" ~-2 (m 4 h -  ( D 2 L 4 / g 4 ~ ) 2 )  1 / 2  cosh(gvm) n t- COS(gUm) 

0 m = 1 ~ 

822/71/3-4-20 
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The minimal value of Vrn occurs for co = 0, which makes /)m - - m .  Thus, 
cosh(rcVm)>~cosh(zcm)~ 1; this means that, to a good approximation, 
we can disregard the term cos(TrUm) in both the numerator and the 
denominator: 

oo S(co) " ~ - - -  64reAL3 ~ '  1 1 
ao m = 1 m2 ( m 4  -at- co2L4/7c4~2) 1/2 (27) 

It now turns out that only the first term m =  1 in (27) contributes 
significantly to the sum, because of the rapidly decreasing term 1/m 2. 

Substituting the formula for A in (27), we can write the final result for 
the power spectrum as 

647rL2p At 1 
S(co) - a~ (1 -1- co2L4/7~472)1/2 (28) 

which compared to (26) is accurate to within 15%. We define a 
characteristic frequency coc from (28) that will be especially important in 
our subsequent discussion of our computer simulations: 

coo=7 (29) 

From (28) it follows that for co ~ coc, S(co) is almost constant, which 
gives rise to white noise, while for co >coc, we obtain S(co) oc I/co. Notice 
that S(co = 0) scales with the volume of the system. This is to be expected 
on the following grounds. The average of the total number of particles on 
the lattice scales with the volume of the system; thus, (N(t)) oc L 2. Hence 
the fluctuation in N(t) is of the order of AN(t)~ (N(t))l/2oc L. The 
power spectrum is expressible as the cosine transform of (AN(t) 2) (the 
Wiener-Khintchine theorem (21)) and is seen to scale with L 2. 

It has been pointed out that l / f  noise would result from the driven dif- 
fusion equation (12' 14); however, this case was for a semi-infinite system, 
which does not have the crossover to white noise at low frequencies. For  
our purpose, this finite-size effect is of particular importance because the 
crossover frequency is readily determined from our computer experiments, 
and the finite-size dependence can be checked. 

3.2.  C o r r e l a t i o n  F u n c t i o n s  

We now turn to the discussion of the spatial correlation functions. The 
correlation between the particle numbers at position n(r, t) and at position 
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n(r', t') is usually described in terms of the equal-time correlation function 
C(r, r') defined by 

C(r, r ' ) =  ([n(r ,  t ) -  <n(r, t ) ) ] [n ( r ' ,  t ) -  <n(r', t ) ) ] )  (30) 

where { --. ), as before, denote an ensemble average. The calculation of the 
correlation function is done in the same fashion as the evaluation of the 
power spectrum. The formula (30) can be simplified by noting that the 
particle density is constructed in such a way that (n(r, t ) ) = 0 .  Hence, 

1 
C ( r , r ' ) -  L2a2 m,=l m;=l , ,=1 ,2=1 

x { [1 + ( - -  1)nl+'2]nln26mtm2 + [1 + ( - -  1)m~+m2]mlm2C~n,~2} 
(31) 

In expression (31) it is necessary to introduce an ultraviolet cutoff 
corresponding to the smallest wavelength on our lattice, i.e., one lattice 
constant. This means that all sum indices takes values from 1 to N. 

Figure 3 is a plot of (31) for a system size of N=33 .  We have fixed 
r = (L/2 ,  L / 2 )  to the center of the lattice, while r ' =  (x,  L / 2 )  sweeps the 
lattice horizontally. We see oscillations with a wavelength of one lattice 
unit; this comes from the fact that the sum has been truncated, leaving 
maximum intensity on the Fourier component, corresponding to the wave- 
length of one lattice unit. 

At a larger scale we see variation, showing that the correlation func- 
tion is larger when r' approaches the border. To understand this behavior, 
notice that ( n ( r ' , t ) ) = 0 ,  which follows from (13), while (n( r ' , t )  2) 
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Fig. 3. Spatial correlation function C(r, r ') for N =  33, where r is fixed to the center of the 
lattice and r' sweeps the lattice horizontally. 
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depends on r', decreasing toward the center of the lattice. From this it 
follows that the fluctuation in the correlation function is damped toward 
the center of the lattice. At the center itself we see a small peak. In Section 
4 we present computer simulations showing a quite different behavior. 

3.3.  L i f e t i m e  D i s t r i b u t i o n  

The lifetime distribution characterizes the survival times of the par- 
ticles on the lattice. It is defined as the ensemble average of the time each 
individual particle spends on the lattice. This is in general impossible to 
treat from a macroscopic point of view, because the path and lifetime of a 
particle are highly correlated with those of the other particles. In this 
section, we calculate the lifetime distribution from our diffusive description 
of the lattice gas model. 

The lifetime distribution can only be calculated in a probabilistic 
manner, that is, we treat the particles as if they were noninteracting 
random walkers. 

We consider a delta spike in (Xo, Yo) at time to = 0 in the particle 
density and follow how the total particle probability leaks out of the 
domain O. The lifetime distribution is calculated from 

(, 

D ( t ) = -  | dOn(r,t) (32) 
c~t ~ 

The expression (32) can be simplified by introducing the diffusion equation 
(5) for the partial derivative. Hence, 

D ( t ) : - 7 f  d f2V 2n( r , t ) = - ~ f sdS 'Vn ( r , t  ) (33) 

The particle density n(r, t) to be substituted into (33) is the Green's 
function given by (12), where to = 0, whereby we obtain 

D(t) = - -  -167 ' ~ '  sin sin 
L 2 m = l  n = l  

x + exp(72m, t) O(t) (34) 

In our lattice gas model, particles enter over the rim, and the lifetime 
distribution is a simple average over all initial particle positions. To do this 
in Eq. (34) needs some care, because, by definition, the Green's function 
takes zero value on the surface S =  00. This means that D(t) would be 
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identically zero if we follow this path. To obtain a reasonable answer, 
we need to introduce the particle close to the surface from the bulk. The 
obvious choice is to choose this distance as one lattice unit ao. The calcula- 
tion, however, poses no difficulty. Hence, 

647a0 , ~ '  2 
D ( t ) -  L3 q- exp(72m, t) O(t) 

m ~ l  n ~ l  

(35) 

In the following we are only concerned with the asymptotic expansion 
of (35). Thus it is sufficient to obtain an approximate solution. 

To proceed, the double sum for the lifetime distribution can be 
changed to a product of single sums. Define 

S~(a)  = ~ '  n ~ e x p ( - a n  2) (36) 
n = l  

We will define a crossover time tc, which is simply given by tc = 1/c%, 
where co~ is the crossover frequency obtained from finite-size scaling of the 
power spectrum (29). Hence the lifetime distribution (35) can be written as 

D(t) oc S_2(t/t~) S2(t/tc) + So(t/t~) 2 (37) 

The single sum (36) can be approximated by applying the Euler-Maclaurin 
formula. (=) Thus 

S~(t / tc)=~fTx~ex p - ~ x  2 d x + ~ e x p  -~c +R~, (38) 

We have retained the leading correction, which is just the function 
x" e x p ( - a x  2) evaluated at the boundary values of the integral, but we will 
disregard higher-order corrections R~. The integrals are all expressible in 
terms of the error function [ref. 23, formula (3.461.5)]. Putting everything 
together, we find 

D(t) oc exp(-2t/tc)(t/tc) 3/2 (39) 

From (39) we see that there exists a region where the lifetime distribu- 
tion follows an algebraic scaling law with exponent 1.5, independent of 
lattice size. This is due to the fact that the error function is slowly varying 
compared to the algebraic term. For times t larger than some characteristic 
value to, the distribution falls off exponentially. This crossover comes from 
the finite size of the system and tc is shown to scale with the volume of the 
lattice. 
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4. R E S U L T S  OF C O M P U T E R  S I M U L A T I O N  

In this section we describe the results of computer simulations of the 
deterministic lattice gas model introduced in Section 2. In the mathematical 
formulation of the model used in the computer simulations we introduce a 
discrete variable z(r, t), which is analogous to the particle density n(r, t) 
used in the diffusive description. Let z(r, t) = 0 if the lattice site r = (i, j)  at 
time t is empty; otherwise we set z(r, t ) =  1. The individual particle path 
through the lattice will be denoted r(t). Thus the particle enters at the 
boundary at position r(t = 0). The particle then diffuses around and at a 
later moment t' is annihilated. The time t' is termed the lifetime of the 
particle. 

4.1. D i f fus ion  C o n s t a n t  

In the description of the continuous model of the lattice gas, there 
enter two parameters: the amplitude of the white noise A, which was 
discussed in Section 3, and the diffusion constant 7- The lattice gas model 
has, however, only one free parameter, p. Thus we expect that 7 is some 
function of p. 

We have calculated the tracer diffusion coefficient D by measuring the 
ensemble average of the mean square displacement R2(t) of the particles, 

RR(t) = (Jr( t )  - r(t = 0)] 2) (40) 

which was shown to scale linearly with t. The linear behavior was found for 
all values of p and we obtained D(p)oc p. This result suggests that the 
individual particles in the lattice gas move as ordinary random walkers; 
only the tracer diffusion constant is affected by changing p. 

It is important to distinguish between tracer diffusion and collective 
diffusion. The diffusion constant entering the diffusion equation is the 
collective diffusion constant 7. It is defined as the proportionality constant 
between an infinitesimal density gradient applied to the system and the 
response in the particle current. 

In our computer simulations, an estimate for 7 has been obtained by 
considering the lattice gas model with periodic boundary conditions in the 
y direction and introducing a density gradient by applying different p at the 
two remaining boundaries. This effectively reduces the dimensionality of 
the system to one dimension. For p = 10- ~ at the left-hand side and p = 0 
at the right-hand side, the lattice gas entered a steady state where the den- 
sity across the system was found to drop linearly. By measuring the average 
particle current through the system per time step J and the density gradient 
Vn, we can determine ? by ? =J/(NVn) ,  where N is the linear extent of the 
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lattice. The diffusion constant 7 showed a considerable size dependence. 
For  our largest system N = 128 we obtained 7 = 1.9. 

Reducing the boundary drive to p ~< 10 -2 on the left-hand side, we 
obtained a constant density throughout the bulk, but with a density drop 
in the vicinity of the rightmost border. This result supports diffusive 
behavior for moderate boundary drives p ~ 10 1, while it predicts that in 
the limit of small p the diffusive description is not valid. This result will be 
supported further in the succeeding sections, but for now it suffices to draw 
the parallel back to Fig. 2, which made it clear that the lattice gas showed 
qualitatively different behavior when p was reduced from p = 10 -1 to 
p = 1 0  2. 

4.2. P o w e r  S p e c t r u m  

We have obtained the power spectrum by Fourier transformation of 
the time signal for the total number of particles on the lattice. In order to 
obtain sufficient statistics, it is necessary to perform an ensemble average 
containing several independent runs. Thus S(f)  is obtained by 

2) ,41, 

The angular brackets denote averaging over many different time series. 
Figure 4 shows the power spectrum for the lattice gas for different 

lattice sizes where the boundary drive is fixed to p =  10 1. The power 
spectrum satisfies an algebraic scaling law S(f)  oc 1If ~, where the exponent 
fl = 1. For  the lattice of size 128 x 128, the scaling region extends for over 
three orders of magnitude. The deviation from fl = 1 is caused by our finite 
system size as well as a finite time resolution. At high frequencies, the 
deviation is due to aliasing/TM The low-frequency crossover to white noise 
is caused by the finite system size; as the system size increases, the 
crossover frequency is reduced. [In Section 3.1 we calculated the power 
spectrum (28) from the linear diffusion equation. The result showed 
that the power spectrum should scale as S(f)  oc 1/f for f larger than the 
frequency fc, which is in accordance with the computer simulations.] 

From (29) we see that fc should scale inversely with the volume of the 
lattice. The crossover frequency f~ can be obtained from the numerical 
simulations in Fig. 4 by locating the characteristic frequency where the 
power spectrum exhibits a crossover from 1/f noise to white noise, as 
indicated by the small arrows on Fig. 4. Good  agreement with the scaling 
relation is observed. 

The diffusion constant 7 which enters the diffusive description can be 
calculated by substituting numerical values for system size N and crossover 
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Fig. 4. The power spectrum S(f) for the deterministic lattice gas model for different lattice 
sizes. It is seen to satisfy algebraic scaling with exponent/3 = 1. From the inset it follows that 
the crossover frequency fc scales inversely with the volume of the system. The boundary drive 
is fixed to p = 10 -1 in all simulations. 

frequency fc into (29). The fact that fc satisfies the above-mentioned scaling 
relation implies that 7 is independent of system size. Direct evaluation 
yields 7 = 1.4. 

In Section 4.1 the value of the diffusion constant was estimated inde- 
pendently to be 7 --= 1.9. However, the use of periodic boundary conditions 
will, in general, cause an enhanced particle current because we have 
eliminated the noise from the horizontal borders, which makes it easier for 
the particles to follow the stream. If the diffusive description is to be taken 
seriously, we should expect the difference between the two values to 
disappear in the thermodynamic limit. 

The value of the exponent/3 depends on the strength of the boundary 
drive. In Fig. 5 the lattice size is fixed to 16 x 16, while p is varied. As can 
be seen from the figure, the power spectrum scales as S(f)oc 1/H at 
frequencies which are large compared to f t .  However, the exponent exhibits 
a crossover from/~ = 1 for p > Pc to/~ = 2 as the boundary drive is reduced 
from p = 10 -1 to p = 10 -4 .  

This result cannot be explained from the diffusion equation, where we 
obtained an exponent /3 = 1 independent of the free parameters ~ and A. 
Thus, when p is reduced below p = 10 -2, the diffusion equation does not 
offer an adequate description of the lattice gas. This conclusion supports 
the previous observation that the collective diffusion constant was ill 
defined at small p values. 

The dependence of the crossover frequency fc on p can be obtained 
from Fig. 5. The crossover frequency is determined as before and we have 
indicated fc with small arrows; we get fc oc p, which is to be expected on 
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Fig. 5. Power  spectrum S(f) for the deterministic lattice gas model. The boundary  drive is 
varied between p = 10 t and p = 10 -4. Note  that the critical exponent  exhibits a crossover 
from fl = 1 to fl = 2 as the boundary  drive vanishes. In all s imulations we have used a 16 x 16 

lattice. 

the following simple-minded argument. We consider a situation where we 
reduce the boundary drive from p~ to P2. Thus the number of particles 
which are introduced into the lattice is reduced by this ratio Pz/P~. If we 
now assume that the qualitative behavior of the lattice gas is unaffected, 
this reduction can be thought of as redefining our time unit by the recipro- 
cal of this ratio. From this the frequency dependence of p follows. It is 
interesting that f ,  continues to be proportional to p with the same propor- 
tionality constant through the region where fi changes from 1 to 2. 

4.3. Lifetime Distribution 

To investigate why the exponents change so dramatically with p, we 
have calculated the lifetime distribution of the particles. The lifetime dis- 
tribution is obtained by labeling the particles and following them through 
each iteration. We record the number of iterations each particle survives in 
a subsystem of the lattice and calculate the histogram. Thus, if the particle 
trajectory is given by r(t), where r(t = 0)e  (~r we set t = 0 when the par- 
ticle enters over the boundary of the subsystem; the lifetime of the particle 
is defined as t ' =  max{t ] r ( t )e  ~s.b}. In the numerical simulation, there is 
no need to average over independent runs, because the system itself is 
self-averaging, in the sense that new particles are continuously supplied at 
the boundary, which are incorporated in the statistics. 

It is important to use a subsystem, because the activity at the bound- 
ary is much higher than in the bulk, due to the white-noise boundary 
condition. This will overestimate D(t) for small values of t and lead to a 
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too high value for the c~ exponent. 6 It should be recognized that the use of 
subsystems is a computational trick to mask out the initial transient 
behavior and that the correct ct exponent would show up for large system 
sizes. In all simulations the subsystem chosen is s b_ 
= [L/4, 3L/4] x [L/4, 3L/4]. 

Figure 6 shows the lifetime distribution D(t) for different subsystem 
sizes when the boundary drive is fixed to p = 10 1. We observe that D(t) 
follows a power law D(t) oc 1/F when t is smaller than some crossover 
time constant to, which is indicated by small arrows. 

For  t larger than tc we see an exponential decay. The exponent 
approaches a constant value ~ = 1.5 independent of the lattice size, and 
shows some transient behavior for the small systems. [In Section 3.3 
we calculated the lifetime distribution (39) from the linear diffusion equa- 
tion. The result showed that the lifetime distribution should scale as 
D(t) oc 1/t 3/= for t less than to, while D(t) should decay exponentially for 
t larger than tc, which is in accordance with the computer simulations.] 

In Section 3.3 we defined tc= 1/coo. Thus the crossover time tc is 
expected to scale with the volume of the lattice. From the inset of Fig. 6, 
we see that this is indeed the case. 

In the following we examine the consequences of reducing the 
boundary p on the lifetime distribution. 

6 This effect leads, unfortunately, to an overestimate of the ct exponent. See refs. 6 and 24. 
The power spectrum of the number of particles within the subsystem has the same scaling 
exponent as for the number of particles on the whole system. 
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Fig. 6. The lifetime distribution D(t) for different subsystem sizes, with a fixed boundary 
drive of p = 10 1. The lifetime distribution scales as a power law with exponent ~ = 1.5 for 
t < to, while for t >  t c we observe an exponential decay. The inset shows the size dependence 

on the crossover time I c. 
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Fig. 7. The lifetime distribution D(t) for a 16 x 16 subsystem shown for different vaIues ofp. 

Figure 7 shows the lifetime distribution for a subsystem of size 16 x 16 
for various values of p. For p = 10 1 we observe that the lifetime distribu- 
tion scales according to a power law D(t)  oc l i t  ~ with exponent ~ = 1.5. 
This suggests that the particles diffuse through the lattice asymptotically as 
independent random walkers. 

For p in the range p c [10 -2, 10-31 the scaling behavior vanishes and 
D(t)  develops a peak contribution at short lifetimes and a bump at inter- 
mediate lifetimes. When p is reduced further to below p = 10 -4, the lifetime 
distribution again displays power law behavior, however with an exponent 
which is slightly higher that before. By increasing the system size, the 
qualitative behavior for p c  [10 -2, 10 -3] does not change, while the 
exponent for p =  10 - 4  retains its original value c~--1.5. The results for 
p c  [10 -2, 10 -3] is probably due to finite-size effects and we believe that 

= 1.5 should hold independently of p. 

4,4. Correlat ion Funct ions 

The equal-time pair correlation function is defined analogously to 
(30), only the particle density n(r, t) is substituted by z(r, t). Hence, 

C(r, r ' ) =  ([z(r ,  t ) -  (z(r, t ) ) ]  [z(r', t ) -  (z(r', t ) ) ]  ) (42) 

The computer simulation poses no complications, except that good 
statistics is needed. We only consider the case where r is fixed to the center 
of the lattice, while r' is allowed to move horizontally through the lattice. 
We have simulated the correlation function for the lattice gas for a lattice 
of size 33 x 33 for three different boundary drives, p = 10 -1, p = 10 - 2 ,  and 
p = 10 -3. In the case of the correlation function it is important to use an 
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odd number of lattice sites in the system. This comes from the fact that the 
boundary conditions on a finite lattice must be such that the four ordered 
structures of cubic symmetry can exist as a monodomain on the lattice. 

The results are shown in Fig. 8. The correlation function is seen to be 
symmetrical around the center of the lattice, which reflects that our system 
has inversion symmetry. From our central peak, the function oscillates 
from even to odd lattice sites with a decreasing amplitude. This behavior 
is expected on the following grounds. Assume that the site at the center is 
occupied, z(L/2, L/2) = 1. Thus, the particle is part of a particular domain 
of cubic symmetry. The characteristic size of the domain is called the 
correlation length ~. As we let r' scan horizontally through the lattice, the 
correlation function will reflect the cubic symmetry of the ordered domain. 
In a simple theory we would expect the correlation function to exhibit 
an Ornstein-Zernike type of behavior, ~25) where the amplitude of the 
correlation function is exponentially damped as e x p ( -  [ r -  r'[/~). 

The oscillatory behavior is, however, different for the three boundary 
drives. For p = 10-1 the oscillation is damped after approximately ~ = 2 
lattice sites, while for p = 1 0  -2 the correlation function continues to 
oscillate all the way from the center of the lattice to the border: this 
corresponds to a long-range order of particles sitting in a regular grid, in 
accordance with our discussion in Section 2. This feature is even more 
pronounced for p = 10 - 3 ,  where the amplitude is larger. 

The general behavior of the correlation function for different values of 
the driving field p thus resembles the situation one would expect for a 
thermodynamic system, where the driving field is substituted by the 
temperature. The divergence of the correlation length as p ~ 0 could be 
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Fig. 8. Spatial correlation function C(r, r ' )  for the deterministic lattice gas model. The 
boundary  drive is varied between p = 10 -1 and p = 10 -3. In all s imulations we have used a 
33 x 33 lattice. The correlation functions for p = 10 2 and p = 10 3 are displaced vertically by 
0.3 and 0.6, respectively. 
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interpreted as a phase transition. We will return to this point in the next 
section. 

In Section 3.2 we calculated C(r, r ') from the diffusion equation. 
Returning to Fig. 3, we see pronounced oscillations, with a wavelength of 
one lattice constant. The origin of these is, however, completely different, 
as explained. The similarity between the two correlation functions is, apart 
from the central peak, merely accidental and we are led to the conclusion 
that we cannot pursue the diffusive description to account for the fine 
details in the lattice gas model. 

4.5 .  S t r u c t u r e  F a c t o r  

We have seen in Section 4.4 that the diffusive description of the lattice 
gas is invalidated for p < Pc, where we have estimated p,  to be in the range 
Pc e [ 10-2, 10-1]. If the crossover in the critical fi exponent is associated 
with a kind of phase transition at p =Pc,  this should be detected in the 
structure factor. 

The structure factor S(q) is defined as the Fourier transform of the 
density~lensity correlation function C(r, r'), 

1 
S(q) = ~ 5  ~'. }-', exp [- - i2~q" (r - r ' ) ]  C(r, r ') (43) 

r r '  

The structure factor S(q) can in principle be evaluated for all q vec- 
tors, but if the finite system s is extended to infinity by means of periodic 
boundary conditions, it can easily be shown that only the q-vectors 
q=(h/L,k/L), where (h = 0,..., N) and ( k = 0  ..... N), give a nonzero 
contribution to the structure factor. 

In the computer simulations it is more convenient to formulate the 
structure factor in a slightly different way. Following ref. 25, we obtain 

S(q)=N--Sl~exp(-i2rcq'r)z(r,t) 2) (44) 

The formation of domains of cubic symmetry should show up as a 
peak in S(q) for q = (1/2, 0). Thus, it is sufficient to calculate S(q) for a 
scan along the qx axis. The results are shown on Fig. 9 for a 33 x 33 system 
with p = 10-1, p = 10 2, and p = 10 3. This corresponds to the parameters 
used in Fig. 3. The solid curves through the data points represent a least 
square fit to a Lorenz function. From the fit we obtain the full-width half- 
maximum w of the peaks. The correlation length ~ can be estimated from 
w by ~ = 1/w. 
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Fig. 9. Structure factor for a 33 x 33 lattice for different values ofp. The structure factor S(q) 
shows a diffuse peak around q = (1/2, 0). The width of the peak decreases with p, indicating 
that as p ~ 0, larger and larger domains form. 

From the results we see that there is a dramatic increase in the correla- 
tion length, from p =  10 -1 ( ~ 2 )  to p =  10 2 ( ~ 2 5 ) .  For  p~< 10 -~ the 
correlation length exceeds the system size. 

For a thermodynamic system undergoing a second-order phase trans- 
ition, the correlation length diverges as T ~ Tc. Thus, for a finite system we 
expect the correlation length ~(T) to obtain its maximum value for T =  Tc. 
From Fig. 9, we see that the correlation length continues to increase as p 
is reduced below Pc, which indicates that the phase transition occurs at 
p = 0 and not at p =Pc. 

This implies that the crossover is not induced by a phase transition, as 
we know from the standard theory of critical phenomena, but rather by the 
dynamics, as will be explained in the next section. 

4.6. Crossover 

The change in the fluctuation spectrum from a 1If spectrum to a 1If 2 
spectrum occurs as the density n = n(p) on the system becomes so small 
that system loses its dynamical connectedness across the lattice. The den- 
sity as a function of the introduction probability p can easily be estimated. 
In steady state, the in- and outflux of particles over the edge are equal. The 
probability for a particle to enter the lattice is, to leading order, p ( 1 -  n). 
First, the particle should enter an edge site, which happens with probability 
p. In order for the particle to be able to move from the edge site into the 
lattice, the neighbor site has to be empty; this occurs with probability 1 - n .  
The probability for a particle to leave the system is, to leading order, equal 
to n(1 - p ) n .  The particle has to sit in a site next to the edge site; this give 
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us one factor n; furthermore, the particle has to have a nearest neighbor in 
the direction onto the lattice, which is there with probability n, and finally 
the nearest neighbor site on the edge should be vacant, which gives another 
factor 1 - p .  

The solution n(p) to the equality p(1-n)=n2(1-p) is plotted in 
Fig. 10, together with the measured density. One observes that the density 
converges to a value of about 1/4 as p becomes smaller than about 10 -1. 
At this density, no particle needs to have any nearest neighbor, and hence 
the particle system cannot lower its density further by its own repulsive 
interaction. The particle system is not able to support density waves across 
the system for these low densities. 

In order to quantify this crossover in the dynamical connectedness, we 
have measured the distribution of damage clusters of the system as a func- 
tion of p. The damage clusters are defined as follows. The system is first 
taken into the stationary state. Next two parallel runs are made from initial 
configurations which only differ by the location of one single particle which 
has been placed in one of the edge sites. The system is simulated a number 
of time steps equal to the linear size N of the lattice. This number of time 
steps will suffice for allowing a perturbation to transverse the system if 
a dynamical connection exists across the lattice. By comparing the two 
runs, we are able to identify the number s of lattice sites which have been 
influenced by the extra particle. These sites define a damage cluster of 
size s. During these N time steps, no particles are allowed to leave or enter 
the system over the edge. 

By repeating this procedure, we can measure the size distribution D(s) 
of the damage clusters. Figure 11 shows a semilogarithmic plot of the dis- 
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Fig. 11. The size distribution D(s) of damage clusters shown on a semilogarithmic plot for 
the boundary drive p = 10 -1 and p = 10 2. The system size is 32 x 32. The main contribution 
to the distribution is shifted toward lower cluster sizes as p is reduced, signaling a crossover 
in dynamical connectivity. 

tribution for two different values of p. The first distribution is measured 
with p = 10 -2, which is in the low-drive region in the sense that the average 
density is about 1/4 and that the power spectrum exponent/3 is about to 
crossover from the value 1 to the value 2. The distribution exhibits 
approximately an exponential behavior. The other distribution is measured 
with p - -  10-1. This distribution is very broad with support at cluster sizes 
all the way up to the total system size. For  this p value, /3 = 1 and n(p) is 
slightly larger than 1/4. 

We have studied the size dependence of the average cluster size per 
time step g=  ( s ) / N .  The motivation for considering this quantity is as 
follows. If the whole system happens to be ordered in the cubic pattern dis- 
cussed at the end of Section 2, a damage cluster is always of size N. Hence 

= 1. As soon as the system becomes connected, the number of sites in a 
damage cluster s(t) after t time steps may grow exponentially like s(t),,~ a t 
with a equal to the average number of nearest neighbors, i.e., 1 < a < 4. Our 
simulations show that in the small-p region, g stays finite at a value of 
order one as the system size is increased. For  p larger than 10 1, s grows 
with the system size. The nature of this crossover is the subject of current 
investigations. 

5. THE PERIODIC LATTICE GAS MODEL 

The periodic lattice gas model is defined in analogy with the previous 
lattice gas model, with the exception that the open boundary is substituted 
by periodic boundary conditions. In this manner we obtain a pure model, 
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without a surface, and with translational symmetry, both vertically and 
horizontally. The total number of particles is conserved, and it should be 
noticed that when (z(r, t))~<0.5, there is a possibility that the activity 
stops, because no particle repels any other. However, this is not likely to 
happen, and was only observed for (z(r, t ) ) < z c ,  where zc,~0.3. The 
situation (z(r, t ) ) < z c  is trivial in the sense that the density is so low 
that no density fluctuations can be supported, due to the lack of dynamical 
connectivity in the system. 

The power spectrum S(f) is calculated as the Fourier transform of the 
total number of particles inside a subsystem, while the lifetime distribution 
is calculated as before. The size of the subsystem is chosen to be (2~ub = 
[L/4, 3L/4] x [L/4, 3L/4]. The results for the power spectrum are shown 
in Fig. 12, while the corresponding results for the lifetime distribution are 
shown in Fig. 13. In the simulations we used a fixed particle density 
(z(r, t ) ) =  0.3, which corresponds to the density for the boundary-driven 
system at p = 10 -1, as can be seen from Fig. 10. 

It follows that both S(f) and D(t) for the periodic lattice gas model 
display power law scaling with exponents corresponding to the case p >pc  
for the boundary-driven model. Further, the exponents proved to be 
independent of the particle density [ (z(r, t) ) > zc]. 

The correlation function C(r, r') has been calculated for (z(r, t)> > zc- 
The results are compatible with those for p >Pc. 

The observation of 1If fluctuations in the particle number of a sub- 
volume in the completely deterministic periodic lattice gas raises some 
questions about  the applicability of our analytic description. If we assume 
that the observed power spectrum also in this case is a consequence of 
boundary-driven diffusion, we need to conclude that the surrounding 
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Fig. 12. Power spectrum S(f) for the periodic lattice gas model for different subsystem sizes. 
The density of particles is fixed to ( z ( r ) ) =  0.3. 
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Fig. 13. The lifetime distribution D(t) for the periodic lattice gas model for different 
subsystem sizes. 

system effectively produces a white noise drive of the z(r, t) at the bound- 
ary of the subsystem. [This is certainly consistent with the numerically 
observed spectrum of the boundary values of z(r, t), but the power spec- 
trum of the local quantity z(r, t) for some fixed r always numerically 
appears to be white.] However, since the boundary is arbitrarily chosen, a 
white noise boundary condition for the subsystem seems to be equivalent 
to a white noise bulk term in the diffusion equation. This lead to an 
inconsistency, since we know that a white noise bulk term produces a 1If 3/2 
spectrum. We have not yet been able to argue in a convincing way for the 
form of noise terms to be included in the Langevin equation describing 
periodic lattice gas. 

We should also like to mention that we expect that the fluctuation 
spectrum of a gas of interacting particles which are allowed to move 
continuously in space will exhibit 1If 3/2 as soon as the particle trajectories 
become chaotic. The restriction to a discrete lattice hinders the lattice gas 
particles from developing truly chaotic trajectories, although, as indicated 
by the lifetime distribution, the particles do behave at long times as 
random walkers. This point is currently under investigation by the use of 
molecular dynamics simulations of particles moving in the continuous 
plane. 

6. CONCLUSION 

We have presented a detailed analysis of 1If fluctuations in a lattice 
gas in which particles move according to deterministic rules. Two realiza- 
tions of the model have been studied: a completely deterministic periodic 
model and an open system with a stochastic drive at the boundary. In both 
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models we observe a l / f  power spectrum for the density fluctuations within 
a subvolume. 

The simulation results were compared to analytic results derived from 
a macroscopic Langevin description in terms of a simple diffusion equation 
subject to a white noise boundary condition. It is important to emphasis 
that this description does not include any fluctuating bulk source term. 

The 1If spectrum found in the case of deterministic dynamics is in 
contrast to results for lattice gases driven by Monte Carlo dynamics. The 
density fluctuation spectrum for such models has previously been found to 
exhibit a power spectrum which scales as  1 / f 3 / 2 .  (7) Such fluctuations can be 
described by the use of a diffusion equation in which a conserving bulk 
noise term is included. 114' 20) 

Although the deterministic and the stochastic lattice gases have 
different density fluctuations, the individual particles do, in both cases 
asymptotically, perform ordinary random walks. The difference between 
the two models consist in different correlations among the particles. In the 
deterministic model, the particles remain correlated, whereas in the 
stochastic case, correlations are lost with time. This shows up in the follow- 
ing way. Strictly independent particles will fulfill the scaling relation 
c~ + fi = 3, where the lifetime scales as D(t)~  lit ~ and the power spectrum 
scales as S( f )  ,,~ l / fB .  (9) This scaling relation is found to be fulfilled for the 
stochastic lattice gas, whereas the deterministic gas has 7 = 3/2 and fi = 1. 

It is interesting to investigate in more detail the connection between 
the microscopic dynamics and the form of the fluctuating source term to be 
included in an effective Langevin diffusive description. We have found that 
deterministic dynamics on a lattice is to be described without a fluctuating 
bulk source term. Does this result change as the trajectories of the particles 
are allowed to be more complex? We would expect that interacting par- 
ticles moving in a continuum will produce density fluctuations which need 
a bulk noise term in the effective Langevin equation as soon as the particle 
trajectories become chaotic. This issue is currently under investigation. 
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